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Abstract—In this study, we develop a frame sequence-based
transformer model for the automated detection of Foreign Object
Debris (FOD) on airport runways. Our model integrates an
LSTM network with a pre-trained DETR transformer to enhance
detection robustness in terms of accuracy and consistence.

Our approach captures short video sequences as input, using
the encoder-decoder component of the DETR model to extract
essential features. These features are then propagated through
LSTM cells to incorporate temporal context. We explore various
configurations of our proposed model and compare its perfor-
mance with the baseline DETR. Experimental results demon-
strate that our proposed model achieves significant improvements
in both detection accuracy and consistency, showcasing its po-
tential in enhancing safety on airport runways.

Index Terms—FOD detection, Transformer, LSTM, DETR

I. INTRODUCTION

Foreign Object Debris (FOD) detection is essential for

airport safety. FOD includes any foreign objects or materials

on the airport surface or runway that have the potential to

cause damage. Such objects vary from tools and aircraft parts

to rocks, debris, and wildlife. Timely detection of FOD is

critical as it helps prevent aircraft damage, preserves runway

integrity, increase aviation safety, and reduces flight delays and

cancellations, among other benefits.

Traditional solutions for FOD detection include manual

inspections, patrol vehicles, sweeping machines, and mag-

netic bars. Some automated approaches include the use of

radar systems and Closed-Circuit Television (CCTV) [1],

[2]. However, some radar-based systems are challenged with

detecting smaller items and require significant cost to install

and maintain around a runway. CCTV commonly requires

constant human monitoring, whose effectiveness is limited by

visibility conditions.

Over the past decade, computer vision solutions, particularly

those utilizing deep neural networks (DNNs), have been in-

creasingly adopted for FOD detection [3]–[6]. Solutions based

on Convolutional Neural Networks (CNN), such as you only
look once (YOLO) and its variants [7]–[12], were among the

initial approaches explored. In 2017, transformers, initially

developed for Natural Language Processing (NLP) tasks, were

introduced [13]. Subsequently, the use of transformers in

computer vision became more prevalent, particularly in tasks

like image classification [14] and object detection [4], [15],

[16]. Transformers offer advantages such as global context

understanding and an unlimited input size, making them more

flexible and accurate compared to CNNs.

The existing DNN-based solutions for FOD detection com-

monly rely on single input images for their decision-making

process. Such approaches tend to overlook contextual informa-

tion over time, which can result in inconsistent and unstable

detection outcomes. In this regard, FOD detection using 3D

videos would be more advantageous, as it naturally captures

all spatial contexts. However, this benefit comes with a heavy

computational cost, especially for vision transformers.

In this paper, we develop a frame sequence-based trans-

former model for automatic FOD detection. Specifically, we

combine a Long Short-Term Memory (LSTM) network with

a pre-trained DEtection TRansformer (DETR) model [15],

a state-of-the-art detection transformer, to enhance both the

accuracy and frame-wise consistency of the network for ro-

bust detection performance. Our model captures short video

sequences as the input and utilize the encoder-decoder part of

the DETR model to extract features from the video frames.

The LSTM is used to propagate these features over time,

enabling the most critical features of each frame to be shared

and distributed throughout the sequence of frames. To the best

of our knowledge, this is the first work to utilize LSTM +

DETR for FOD detection.

The data in this study were acquired at Ohio University

Gordon K. Bush Airport (KUNI, https://www.ohio.edu/airport)

in Sept. 2022. Fig. 1 shows the trajectory of our data acquisi-

tion van (in blue color), overlaid onto a geospatially matched

Google Maps patch.

Fig. 1: Data acquisition at Ohio University Gordon K. Bush

Airport (KUNI).
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II. BACKGROUND

A. RNN and LSTM

Recurrent Neural Networks (RNNs) are designed to process

sequences of data, making them particularly well-suited for

tasks that require understanding and integrating historical

information. A RNN maintains a loop ’memory’ cell, which

allow the information from pervious inputs to be carried over

from one step of the network to the next.

LSMT is a special type of RNN that is capable of learning

long-term dependencies. Introduced to overcome the vanishing

gradient problem found in the traditional RNNs, LSTMs have

a more complex computational unit that includes three gates

(input, output, and forget) and a cell state. This architecture

enables them to not only process individual data points (such

as words in a sentence) but also entire sequences of data.

B. Transformer

The transformer, introduced in a seminal paper [13], marked

a significant shift in the approach to sequence-to-sequence

tasks, commonly found in NLP applications like translation

and text summarization. The transformer model is character-

ized by its use of self-attention mechanisms, which allows the

model to weigh the relative importance of different parts of

the input data.

The self-attention mechanism works by generating three

vectors from each input in the sequence: Query (Q), Key

(K), and Value (V). The query vector is used to determine

the level of focus that should be put on other parts of the

input sequence. The key vector is matched against the query

in the attention mechanism, while the value vector represents

the actual value that is used to construct the context. In the

original paper, the authors use a linear layer and a softmax
to predict the probability distribution over the vocabulary for

next token, which can be described as follows:

Attention(Q,K, V ) = Softmax(
QKᵀ
√
dk

)V (1)

The transformer model has been extensively adapted for

applications beyond NLP. Typically, a transformer consists of

an encoder and a decoder module. The inputs to a transformer

are embeddings, which are high-dimensional vector represen-

tations that encode the semantic information of the original

input. In NLP tasks, these embeddings are often word em-

beddings, while in computer vision tasks, image embeddings

are utilized. These embeddings are usually generated by other

models. For example, Word2Vec [17] is a common model

for word embeddings, and ResNet [18] is frequently used for

image embeddings. In addition, positional encoding is applied

to incorporate positional information into the input, enabling

the model to understand the sequence order of the data.

III. METHOD

In this research, we began with a DETR model that was pre-

trained on the Microsoft Common Objects in Context (COCO)

dataset [19]. We then fine-tuned this model with our own

FOD dataset, using it as the baseline for our research. DETR,

different from models like YOLO and its variants [7], [8], is a

foundation detection model built on a transformer architecture.

This design choice eliminates the need for predefined anchor

boxes, directly predicting bounding boxes and class labels.

Fig. 2: An illustration of DETR’s architecture. “DETR enc-

dec” denotes the encoder-decoder component.

DETR follows an encoder-decoder architecture, similar to

the original NLP transformer model, as illustrated in Fig. 2.

Inputs to the network are images, which are first processed

through a backbone CNN, usually ResNet-50 or ResNet-101,

to extract features. The network’s encoder and decoder com-

prise multiple layers of attention modules and Feedforward

Networks (FFNs) to carry out the self-attention mechanism.

DETR introduces the concept of object queries, which are

learnable representations enabling the model to identify ob-

jects. A fixed number of learned positional embeddings, 100

as per the original design, inform the model about the spatial

relationships between different parts of an image. The output

from the decoder is then processed by the detection head,

which includes two FFNs to produce the network outputs. One

FFN is responsible for predicting class labels, while the other

predicts bounding boxes.

In Fig. 2, we label the encoder-decoder component as

”DETR enc-dec.” This component forms the foundation of

our proposed detection model, which will be explained in the

next section.

A. Proposed sequence based DETR models

Our goal is to enhance the DETR detector by incorpo-

rating temporal information, enabling it to make detection

decisions with context awareness. This addition is expected to

improve the robustness and consistency of the model’s output.

To achieve this, we propose seqDETR, a detection model

that connects multiple DETR enc-dec units using an LSTM

network.
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The integration of LSTM in our model is conducted by

positioning LSTM cells directly after the decoder of DETR. In

contrast to DETR, which processes individual 2D images, our

seqDETR handles a sequence of video frames. Each frame,

along with a small preceding set of frames, is input into

to a DETR encoder-decoder (enc-dec) model. This model is

essentially the DETR component minus the detection head, as

shown in Fig. 3. The outputs from this frame sequence create

a series of tensors, which are then fed into the LSTM cells.

The LSTM is capable of retaining historical or temporal in-

formation from this sequence. To create a residual connection

and ensure robustness, the output of the LSTM is combined

with the output of the current frame, especially as a fallback

if the LSTM does not effectively learn. This combined output

is then fed into the detection head to produce the final result.

Fig. 3: An illustration of the architecture of the proposed

seqDETR model.

In practice, we do not feed each frame and its corresponding

mini sequence into the model every time. To simplifying the

training process and computational complexity, we sequen-

tially feed each frame but always store the outputs of the

previous k frames from the decoder. We explored k = 3 and

k = 5 in our implementations and experiments, leading to the

development of the corresponding seqDETR models, named

seqDETR-3 and seqDETR-5, respectively. This approach

allows us to use the results stored in memory for previous

frames, rather than recalculating the LSTM input for each

frame. This leads to significant savings in both GPU memory

and computational power. As a result, the average inference

time of seqDETR-3 and seqDETR-5 are 6.36 frames per

second (fps) and 6.33 fps respectively, which are close to the

6.37 fps inference time of fine-tuned DETR.

In this work, our models are all trained and evaluated on a

system equipped with an Intel Xeon W-2255 CPU (3.7 GHz,

10 cores), 128 GB of RAM, and two NVIDIA RTX A5000

GPUs.

IV. EXPERIMENTS AND RESULTS

In this section, we present and evaluate the experimental

results for the proposed seqDETR model. We used three

different performance metrics commonly used on the Mi-

crosoft COCO dataset – mAP, mAP50, and mAR100 – to

measure detection accuracy and consistency. mAP represents

the mean Average Precision across all classes, calculated at

10 different Intersection over Union (IoU) thresholds, ranging

from 0.50 to 0.95, and is also known as mAP50-95. mAP50

measures the average precision at a 50% IoU threshold across

all classes. mAR100 denotes the mean Average Recall given

100 detections per image, reflecting the model’s ability to

identify all relevant instances. Generally, mAP scores indicate

the accuracy of the model, while mAR scores show its

comprehensiveness in detecting instances.

In addition, to evaluate the consistency of the detection re-

sults, we employ the average standard deviation (STD) of the

bounding box widths and heights across various types of FOD.

This metric assesses the variance of box dimensions between

frames, with lower values indicating greater consistency.

A. Data used in our experiments

The data for our experiments was collected using a van

equipped with a GoPro 10 camera for video capture and a

Honeywell GPS/INS n380 to gather corresponding GPS data.

We analyzed footage from two different trips, referred to as

Trip A and Trip B. Both trips recorded multiple objects on

an airport taxiway surface, providing a diverse dataset for our

study. Trip A occurred around 6pm, while Trip B took place

at approximately 7pm, with each covering different sections

of the airport’s taxiway.

Trip A consists of 638 image frames, while Trip B contains

493 images. Our experiments make use of eleven different

types of FOD, including items such as a screwdriver, flashlight,

cell phone, scissors, and washers, as illustrated in Fig. 4. Due

to the relatively small size of our dataset, we have categorized

all FOD types into a single class. To enhance our dataset,

we applied simple data augmentation techniques including

flipping, translation, and rotation.

B. Results of our experiments

To evaluate the models’ performance, we carry out two

different training and testing splits: Setup I) Using Trip A data

for training and Trip B data for testing; and Setup II) Using

Trip B data for training and Trip A data for testing. Three

distinct experiments are conducted for each setup: 1) FOD

detection using a fine-tuned DETR model on individual video

frames, which is the baseline model in this work; 2) Detection

using our proposed seqDETR with mini-sequences of three

frames (seqDETR-3); and 3) Detection using seqDETR with

mini-sequences of five frames (seqDETR-5).
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Fig. 4: FOD types used in our experiments.

TABLE I: FOD detection performance of different models.

Setup Model mAP mAP50 mAR100

Setup I
Fine-tuned DETR 0.4287 0.7807 0.5854
SeqDETR-3 0.4553 0.8391 0.6117
SeqDETR-5 0.4432 0.7982 0.6613

Setup II
Fine-tuned DETR 0.3661 0.6686 0.6203
SeqDETR-3 0.3894 0.6848 0.6264
SeqDETR-5 0.3334 0.6263 0.5815

Table I presents the quantitative results of the competing

models based on the selected COCO metrics. Our proposed

seqDETR models outperform the baseline DETR in all experi-

ments. In setup I, seqDETR-3 shows improvements of 6.20%,

7.48%, and 4.49% over the baseline model, while seqDETR-

5 yields improvements of 3.87%, 2.24%, and 12.97%. In

setup II, seqDETR-3 again outperforms the fine-tuned DETR,

registering improvements of 6.36%, 2.42%, and 0.98%. How-

ever, for seqDETR-5, there is a deterioration of 8.93%,

6.33%, and 6.25% compared to the fine-tuned DETR. For

both setups, seqDETR-3 performs the best on mAP and

mAP50. SeqDETR-5 shows better performance on mAR100

in setup I while seqDETR-3 performs better on mAR100 in

setup II. A possible explanation for 3-frame models generally

outperforming 5-frame models is that the 5 frames may have

overwhelmed the LSTMs, leading to decreased accuracy.

Table II shows the quantitative results based on the con-

sistency metric. Our proposed seqDETR models demonstrate

greater consistency and robustness than the baseline model,

evident from the smaller variances observed over the detected

bounding boxes. In setup I, seqDETR-3 and seqDETR-5

show improvements of 9.64% and 8.28%, respectively, over

the baseline model. In setup II, improvements of 76.63%

and 10.42% are observed for seqDETR-3 and seqDETR-5,

respectively, compared to the fine-tuned DETR. seqDETR-3

shows smaller box variance than the ground truth in setup II,

which may be attributed to two reasons: 1) the ground truth is

labeled by humans, which inevitably introduces inconsistency,

and 2) the test data in setup II, Trip A, may be less challenging

than Trip B, as in setup I.

Fig. 5 presents a visual comparison across 20 consecutive

frames, which contain a screwdriver in a number of middle

TABLE II: Bounding box variance comparisons: smaller box

STD values indicate more stable detection performance.

Setup Model Box STD

Setup I

Ground Truth 12.2863
Fine-tuned DETR model 14.8394
SeqDETR-3 13.6100
SeqDETR-5 13.4093

Setup II

Ground Truth 13.4672
Fine-tuned DETR model 17.9285
SeqDETR-3 4.1897
SeqDETR-5 16.0606

frames. A zoomed-in view of the screwdriver can be found

in Fig. 6.(a). We stack these frames into a single image,

highlighting the detected objects. Fig. 5.(a) displays the results

from the baseline model, while (b) and (c) show the results

of seqDETR-3 and seqDETR-5, respectively. The detected

bounding boxes are shown as blue rectangles. It is evident that

seqDETR-3 outperforms the others in terms of the number

of detections and bounding box variance, aligning with the

evaluation results. Notably, seqDETR-3 effectively detects

FOD in various lighting conditions, including both light and

shadow areas. In contrast, seqDETR-5 misses some FOD

instances in certain frames, and the baseline model has an even

higher miss rate, particularly when the FOD is in shadowed

areas.

Fig. 6 provides a close-up view of two consecutive frames

from Fig. 5, highlighting the impact of lighting changes due

to shadows on detection. The baseline model in Fig. 6.(a)

struggles with detecting the screwdriver in these conditions.

In contrast, seqDETR-3 and seqDETR-5 successfully detect

the FOD in both frames, demonstrating its robustness against

variations in lighting and shadow. In summary, the experi-

mental results demonstrate that the seqDETR models have

successfully achieve our design goals.

V. CONCLUSIONS

In this research, we present a transformer based FOD

detection model, seqDETR, for airport surfaces including

runway and taxiway surfaces. This model processes daily

inspection video footage as input. We modify the DETR model

and incorporate an LSTM to aggregate temporal information

from previous frames. Various training and testing scenarios,

as well as model setups, were explored and analyzed. The

modifications led to significant improvements in both mAP and

bounding box variance. These results underscore the success of

our modifications and demonstrate the potential of seqDETR

in FOD detection. To improve seqDETR’s adaptability, we

plan to include more datasets covering various lighting and

weather conditions in future work.
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Fig. 5: Stacked detection results across 20 consecutive frames.

a) first row: results from the baseline fine-tuned DETR model,

b) second row: from seqDETR-3 and c) third row: from

seqDETR-5.

(a) Baseline model (b) seqDETR-3 (c) seqDETR-5

Fig. 6: Zoomed-in view of the detection results of the three

models for two consecutive frames.
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